第三百八十六章:γ镍,可控核聚变技术初露(4/4)
以30kv,可以轻松将d或t原子核加速到30 kev。
就像加速显像管内电子枪射出的电子束一样。
这样来说,粒子加速器完全是可以用于核聚变的。
因为只要10 kev以上的d或t原子核发生对心碰撞,两者距离接近至核力作用范围(10的负15次方米),dt聚变反应就会发生。
粒子加速器能发生核聚变反应的确没错,但伴随而来的依旧核与核之间相斥的问题。
在粒子加速器中,射向t靶的d原子核,会因为t靶的t原子核自带核外电场排斥、散射d原子核,从而造成并不是所有的d原子核都能命中t标靶进行聚变的。
大约需要发生10000000(一千万次)散射,损失10000000(一千万)个加速后的d原子核后,才有可能发生1次dt聚变。
如果用数学方式来计算,投入的能量是:1000000010kev100000v。
而一次dt核聚变诞生的能量则是:117.6v17.6v。
由此可以知道,用粒子加速器来制造可控核聚变完全是入不敷出的方法。
虽然它可以产生聚变反应没错,但得不到聚变能。
人类发展可控核聚变技术,是需要从这种技术中获得能源的,而不是为了其投入大量能源的。
既然是这样,可能又有人会说,我将粒子加速器找到东西包起来,让d原子核不跑出去,让它一直在粒子加速器内转不就行了吗?
有人是这样想的,科学家也是这样想的。
而这个问题,就是人类至今为止一直都没有解决的问题。
d原子和在和t原子核聚变时,会产生上亿度的高温,而人类找不到一种材料,可以包裹dt核聚变是产生的上亿度高温。
即便是能用磁场来进行约束,还有dt核聚变过程中产生的大量中子会对制造磁场的设备造成严重破坏。
这就是中子辐照问题。