第41章 中专少女姜如烟与龙傲天——竞赛的开始13(2/3)
落该次敌机后立即退出游戏,或者继续游戏。
如选择继续游戏,则须等待到下一架敌机出现,中途不能主动退出。游戏的难度不断递增:出现的第n架敌机,小明击落对方的概率为(0.85)的n次方”,被击落的概率为1-(0.85的n次方)”,且与之前的事件独立。在任何时刻,如果积分降到0,则游戏自动结束。
姜如烟看到问题部分:
(1)如果游戏中,小明被击落后,其之前的积分保持。那么为了游戏结束时的累积积分的数学期望最大化,小明应该在其击落第几架敌机后主动结束游戏?(A) 1.(B) 2.(C) 3.(D)4.
(2)假设游戏中,小明被击落后,其之前积累的积分会清零。那么为了结束时的期望积分最大化,小明也会选择一个最优的时间主动结束游戏。请问在游戏结束时(小明主动结束、或积分减到0),下列哪一个选项最接近游戏结束时小明 期望积分?(A) 2.(B) 4.(C) 6.(D)8.
姜如烟详细思考后,给出答案2
本小章还未完,请点击下一页后面精彩内容!
敌机的出现是一个参数为1的泊松点过程(如需避免连续时间随机过程,这里也可用指数分布的无记忆性)。在任意时刻,每进行一个单位时间段,小明减少的积分为1。在击落每架敌机后,小明增加的积分为1.5。在这之后,每进行一个单位时间段,小明击落敌机的期望收益为1.5 x(0.85)^n”。
(1)在这种情况下,被敌机击落的期望损失为0。那么我们选择最大的n,使得1.5 x(0.85)^n”> 1,即n2。小明在击落第2架敌机时主动结束游戏。因此选(B).
(2)假设击落第n-1架敌机后,小明所拥有的积分为t。如选择继续等待到下一架敌机出现后结束游戏,积分的数学期望为
(0.85)^n* (t +0.5 x (1 - e^-t)) . (1)
当n1且t≤2时,上式总是大于t。因此小明至少要等到第一架敌机出现。假如小明击落了第一架敌机,那么其手中积分至少为1.5。当n2且t>1.5时,(1)总是小于t。因此,假设小明已经击落了第一架敌机,那么选择“立即结束游戏”总是优于“击落第二架敌机后立即结束”。由第一问可知,无论小明现有积分为多少,其最优结束时间都应该不晚于击落第二架敌机。综上可得,小明的最优策略为:等待第一架敌机出现,将其击落后立即结束游戏。
在此策略下,小明最终积分的期望应为(1)式在n1及t2时的值,约为2.067.最接近的选项为(A).
姜如烟的目光在战机游戏的问题上仔细扫过,她的大脑在数之气的辅助下迅速运转。
她知道,要解决这个问题,需要深入分析概率模型和期望值。
小明的战机游戏是一个典型的随机过程问题,其中积分随时间连续减少,而敌机出现的时间间隔遵循指数分布。每次击落敌机,小明的积分增加1.5,但随着敌机数量的增加,击落敌机的概率逐渐降低。
(1)对于第一个问题,小明被击落后积分保持不变。
姜如烟分析,小明需要在击落一定数量的敌机后退出游戏以最大化期望积分。
她运用数之气强化自己的逻辑推理能力,计算出在击落第二架敌机后主动结束游戏将使期望积分最大化。
这是因为在第二次击落后,继续游戏的潜在收益不再超过积分减少的速率。因此,答案是(B)。
(2)对于第二个问题,小明被击落后积分清零,这改变了他的决策逻辑。
姜如烟再次运用数之气,构建
本章未完,下一页继续